165 research outputs found

    Soil carbon insures arable crop production against increasing adverse weather due to climate change

    Get PDF
    Intensification of arable crop production degrades soil health and production potential through loss of soil organic carbon. This, potentially, reduces agriculture's resilience to climate change and thus food security. Furthermore, the expected increase in frequency of adverse and extreme weather events due to climate change are likely to affect crop yields differently, depending on when in the growing season they occur. We show that soil carbon provides farmers with a natural insurance against climate change through a gain in yield stability and more resilient production. To do this, we combined yield observations from 12 sites and 54 years of Swedish long-term agricultural experiments with historical weather data. To account for heterogenous climate effects, we partitioned the growing season into four representative phases for two major cereal crops. Thereby, we provide evidence that higher soil carbon increases yield gains from favourable conditions and reduces yield losses due to adverse weather events and how this occurs over different stages of the growing season. However, agricultural management practices that restore the soil carbon stock, thus contributing to climate change mitigation and adaptation, usually come at the cost of foregone yield for the farmer in the short term. To halt soil degradation and make arable crop production more resilient to climate change, we need agricultural policies that address the public benefits of soil conservation and restoration

    Managing soil natural capital: An effective strategy for mitigating future agricultural risks

    Get PDF
    Managing soil natural capital: An effective strategy for mitigating future agricultural risks

    How does tillage intensity affect soil organic carbon? A systematic review protocol

    Get PDF
    Background Soils contain the greatest terrestrial carbon (C) pool on the planet. Since approximately 12% of soil C is held in cultivated soils, management of these agricultural areas has a huge potential to affect global carbon cycling; acting sometimes as a sink but also as a source. Tillage is one of the most important agricultural practices for soil management and has been traditionally undertaken to mechanically prepare soils for seeding and minimize effects of weeds. It has been associated with many negative impacts on soil quality, most notably a reduction in soil organic carbon (SOC), although still a matter of considerable debate, depending on factors such as depth of measurement, soil type, and tillage method. No tillage or reduced intensity tillage are frequently proposed mitigation measures for preservation of SOC and improvement of soil quality, for example for reducing erosion. Whilst several reviews have demonstrated benefits to C conservation of no till agriculture over intensive tillage, the general picture for reduced tillage intensity is unclear. This systematic review proposes to synthesise an extensive body of evidence, previously identified through a systematic map. Methods This systematic review is based on studies concerning tillage collated in a recently completed systematic map on the impact of agricultural management on SOC restricted to the warm temperate climate zone (i.e. boreo-temperate). These 311 studies were identified and selected systematically according to CEE guidelines. An update of the original search will be undertaken to identify newly published academic and grey literature in the time since the original search was performed in September 2013. Studies will be critically appraised for their internal and external validity, followed by full data extraction (meta-data describing study settings and quantitative study results). Where possible, studies will be included in meta-analyses examining the effect of tillage reduction (‘moderate' (i.e. shallow) and no tillage relative to ‘intensive' tillage methods such as mouldboard ploughing, where soil is turned over throughout the soil profile). The implications of the findings will be discussed in terms of policy, practice and research along with a discussion of the nature of the evidence base

    Which agricultural management interventions are most influential on soil organic carbon (using time series data)?

    Get PDF
    Background Loss of soil organic carbon (SOC) from agricultural land is identified as one of the major threats to soils, as it influences both fertility and the production of ecosystem services from agriculture. Losses of SOC across regions are often determined by monitoring in different land use systems. Results from agricultural field experiments can reveal increasing SOC stocks after implementation of specific management practices compared to a control, though in time series experiments the relative rate of change is often negative and implying an overall loss. Long-term agricultural field experiments are indispensable for quantifying absolute changes in SOC stocks under different management regimes. Since SOC responses are seldom linear over time, time series data from these experiments are particularly valuable. Methods This systematic review is based on studies reporting time series data collated in a recently completed systematic map on the topic restricted to the warm temperate climate zone and the snow climate zone. These 53 studies were identified and selected systematically according to CEE guidelines. An update of the original search for studies will be repeated using Web of Science and Google Scholar to include newly published academic and grey literature in the time since the original search was performed in September 2013. Studies will be subject to critical appraisal of the internal and external validity, followed by full data extraction (meta-data describing study settings and quantitative study results). Where possible, studies will be included in a quantitative synthesis using time series meta-analytical approaches. The implications of the meta-analytical findings will be discussed in terms of policy, practice and research along with a discussion of the nature of the evidence base

    Inconsistent responses of carabid beetles and spiders to land-use intensity and landscape complexity in north-western Europe

    Get PDF
    Reconciling biodiversity conservation with agricultural production requires a better understanding of how key ecosystem service providing species respond to agricultural intensification. Carabid beetles and spiders represent two widespread guilds providing biocontrol services. Here we surveyed carabid beetles and spiders in 66 winter wheat fields in four northwestern European countries and analyzed how the activity density and diversity of carabid beetles and spiders were related to crop yield (proxy for land-use intensity), percentage cropland (proxy for landscape complexity) and soil organic carbon content, and whether these patterns differed between dominant and non-dominant species. 90 % of individuals respectively. We found that carabids and spiders were generally related to different aspects of agricultural intensification. Carabid species richness was positively related with crop yield and evenness was negatively related to crop cover. The activity density of non-dominant carabids was positively related with soil organic carbon content. Meanwhile, spider species richness and non-dominant spider species richness and activity density were all negatively related to percentage cropland. Our results show that practices targeted to enhance one functionally important guild may not promote another key guild, which helps explain why conservation measures to enhance natural enemies generally do not ultimately enhance pest regulation. Dominant and non-dominant species of both guilds showed mostly similar responses suggesting that manage-ment practices to enhance service provisioning by a certain guild can also enhance the overall diversity of that particular guild

    Global Soil Biodiversity Atlas

    Get PDF
    Soils provide numerous ecosystem services. Most people do not know that the key drivers of soil ecosystems are the living organisms within the soil. Soils may be home to over one fourth of all living species on Earth, with a significant part not yet characterized. The first Global Soil Biodiversity Atlas is a product of the Global Soil Biodiversity Initiative. It aims at raising awareness of the importance and beauty of soil biodiversity among the general public and policy makers. Furthermore, it highlights the need to increase efforts to develop a global assessment of soil biodiversity. Data on distribution of soil-dwelling organisms are often difficult to combine. The atlas represents an attempt to create a unique network among soil biodiversity scientists. Such an effort may help in reaching the level of attention that research on soil biodiversity deserves. With contributions from over 80 experts in soil biodiversity from all over the world, and over 170 pages, the atlas will also display distribution maps of the main soil organisms. Furthermore, an exceptionally high number of images will allow non-specialists to get in touch with this fascinating and mysterious world.JRC.D.6-Knowledge for Sustainable Development and Food Securit
    corecore